Considering climate change in stock management strategy: the case-study of the Gulf of St. Lawrence herring

Washington, June 5th 2018

Pablo Brosset & Stéphane Plourde

Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC G5H 3Z4, Canada

Fisheries and Oceans Canada Pêches et Océans Canada

Centered-vision on fishery

Pair «fishermen-resource»

ECOSYSTEM APPROACH TO FISHERIES

Pair «fishermen-resource»

Ecosystem approach to fisheries

Whole «ecosystem-society»

Consider abiotic, biotic and human components

GULF OF ST. LAWRENCE HERRING STOCKS

Gulf of St. Lawrence

GULF OF ST. LAWRENCE HERRING STOCKS

No stock-recruitment relationship

GULF OF ST. LAWRENCE HERRING STOCKS

1967 •²⁰⁰⁵ 2004 _ g 2001 1997 2015 • 1987 •¹⁹⁷⁰ 1980. 1973 1978 **SSB**

RMSE=0.626

No stock-recruitment relationship

Tiit Raid, Georgs Kornilovs, Ain Lankov, Anne-Marin Nisumaa, Heli Shpilev, and Ahto Järvik

HERRING RECRUITMENT vs ENVIRONMENT

Spring spawners

76% of the **recruitment** deviance explained

Cold water zooplankton community Earlier zooplankton development

Fall spawners

75% of the **recruitment** deviance explained

Warm water zooplankton community Earlier zooplankton development

MSE : Framework to design and test harvest control-rules, assessment methods, and data used to set TACs

MSE : Framework to design and test harvest control-rules, assessment methods, and data used to set TACs

Compare different Management Strategies under different environmental scenarios

How does this affect future:

- Catches?
- **Biomass**?

What objectives do we target?

Modelling work

State-space assessment SAM model (Nielsen and Berg, 2014)

- No stock-recruitment relationship
- Can environmental variables help to model recruitment ?

Add a factor X acting on recruitment:

 $log(R_t) \sim Normal(\mu_t, \sigma^2)$ $\mu_t = \alpha + \beta X_t$

Physical long-term trend was chosen as a proxy of environmental conditions

State-space assessment SAM model (Nielsen and Berg, 2014)

- * No stock-recruitment relationship
- Can environmental variables help to model recruitment ?

Add a factor X acting on recruitment:

 $log(R_t) \sim Normal(\mu_t, \sigma^2)$ $\mu_t = \alpha + \beta X_t$

Physical long-term trend was chosen as a proxy of environmental conditions

State-space assessment SAM model (Nielsen and Berg, 2014)

- * No stock-recruitment relationship
- Can environmental variables help to model recruitment ?
 - Add a factor X acting on recruitment:

 $log(R_t) \sim Normal(\mu_t, \sigma^2)$ $\mu_t = \alpha + \beta X_t$

Physical long-term trend was chosen as a proxy of environmental conditions

Different recruitment levels with environmental periods

RMSE Regime < No Env

Environmental regimes improve recruitment predictions

• How to incorporate environment in projections?

Resampling of the environmental factor

Associate an environmental factor depending on the scenario to predicted years.

Each predicted year: Random sampling of an environmental value will increase or decrease recruitment

• How to incorporate environment in projections?

Resampling of the environmental factor

Associate an environmental factor depending on the scenario to predicted years.

Each predicted year: Random sampling of an environmental value will increase or decrease recruitment

• How to incorporate environment in projections?

Resampling of the environmental factor

Associate an environmental factor depending on the scenario to predicted years.

Each predicted year: Random sampling of an environmental value will increase or decrease recruitment

Future years

Management strategies

No F: No fishing mortality, TAC set to 0

Const Catch: Keep constant TAC at the level of 2016 (20,000 t)

F40%: the fishing mortality that is expected to conserve 40% of maximum spawning potential

F50%: the fishing mortality that is expected to conserve 50% of maximum spawning potential

ConstF: Keep constant fishing mortality at the level of 2016 (0.18)

Harvest control rules

TAC set to 100 t if $SSB < SSB_{lim} = 48,000t$

TAC linearly decrease if SSB_{lim} < SSB < SSB_{target}

No TAC reduction if SSB > $SSB_{target} = 62,000t$

HERRING MSE FORECASTS

HERRING MSE FORECASTS

HERRING MSE FORECASTS

Future LOW herring productivity

No F Const Catch F40% F50% ConstF

Future LOW herring productivity

No F Const Catch F40% F50% ConstF

Future LOW herring productivity

No F Const Catch F40% F50% ConstF

Future HIGH herring productivity

THE MANAGEMENT OF THE FISHERIES DEPENDS ON THE FISH STOCK PRODUCTIVITY

Future LOW herring productivity

Future **HIGH** herring productivity

F<Flim

SSB>SSBcible

IMPROVEMENTS

MSE

→ Future environmental conditions lead to different stock trajectories

Including the environment

→ Highlight the need to take into account the different levels of productivity to inform management and reduce stock vulnerability and risks under climate change

IMPROVEMENTS

MSE

→ Future environmental conditions lead to different stock trajectories

Including the environment

→ Highlight the need to take into account the different levels of productivity to inform management and reduce stock vulnerability and risks under climate change

• Future directions

- Objectives realistically defined with the managers and the industry
- Test others Harvest Control Rules (moving reference points)
- Include environmental forecasts from biophysical models

Thank you for your attention

Considering climate change in the management policy

Washington, June 5th 2018

Pablo Brosset, Stéphane Plourde

pablo.brosset@dfo-mpo.gc.ca

Fisheries and Oceans Canada Pêches et Océans Canada